

Voltage Transducer LV 200-AW/2/SP1

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

 $I_{PN} = 20 \text{ mA}$ $V_{PN} = 100..5000 \text{ V}$

Electrical data

_{PN} _P	Primary nominal r.m.s. current Primary current, measuring range		20 0 ± 40		m A m A
R _M	Measuring resistance		R _{M min}	R _{M max}	
	with ± 15 V	$@ \pm 20 \mathrm{mA}_{\mathrm{max}}$	0	90	Ω
		$@ \pm 40 \mathrm{mA}_{\mathrm{max}}^{\mathrm{max}}$	0	30	Ω
	with ± 24 V	$@ \pm 20 \mathrm{mA}_{\mathrm{max}}$	60	170	Ω
		$@ \pm 40 \mathrm{mA}_{\mathrm{max}}$	60	70	Ω
I_{SN}	Secondary nominal r.m.s. current		100		m A
K _N	Conversion ratio		10000 : 2000		
v c	Supply voltage (± 10 %)		± 15 24		V
I _c	Current consumption		30(@±	24V)+ I s	mA
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		12 ¹)	Ü	kV
_			1 ²⁾		kV
\mathbf{V}_{e}	R.m.s. voltage for partial discharge extinction				
,	@ 10 pC		4800		V

Accuracy - Dynamic performance data

$\mathbf{x}_{\scriptscriptstyle{G}}$	Overall Accuracy @ I _{PN} , T _A = 25°C Linearity error		± 0.5 < 0.1	% %
I _O	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$ Response time 3) @ 90 % of $\mathbf{V}_{\rm PN}$	- 25°C + 70°C	Typ ± 0.4 20 1	mΑ mΑ μs

General data

\mathbf{T}_{A}	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
$\mathbf{R}_{_{\mathbf{P}}}^{^{\prime}}$	Primary coil resistance @ T _A = 25°C	450	Ω
$\mathbf{R}_{\mathrm{s}}^{'}$	Secondary coil resistance @ T _A = 70°C	30	Ω
m	Mass	1.6	kg
	Standards	EN 50178 (01.10.97)	

Notes: 1) Between primary and secondary + shield

- 2) Between secondary and shield
- ³⁾ \mathbf{R}_1 = 50 kΩ (L/R constant, produced by the resistance and inductance of the primary circuit).

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Accessible electronic circuit
- Shield between primary and secondary circuit.

Special feature

• $V_d = 12 \, k \, V^{1}$.

Principle of use

 For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R₁ which is selected by the user and installed in series with the primary circuit of the transducer.

Advantages

- Excellent accuracy
- Very good linearity
- · Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

030915/6

Dimensions LV 200-AW/2/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

Transducer fastening
 4 slots Ø 6.5 mm

4 M6 Steel screws

Recommended fastening torque 4.5 Nm or 3.32 Lb - Ft.

Connection of primary
 M5 threaded stude
 Connection of accordance
 M6 threaded stude

Connection of secondary
 Recommended fastening torque
 2.2 Nm or 1.62 Lb - Ft.

Remark

• I_s is positive when V_p is applied on terminal +HT.

Instructions for use of the voltage transducer model LV 200-AW/2/SP1

Primary resistor \mathbf{R}_1 : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, \mathbf{R}_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 20 mA.

Example: Voltage to be measured $\mathbf{V}_{PN} = 1000 \, \text{V}$ a) $\mathbf{R}_1 = 50 \, \text{k}\Omega/40 \, \text{W}$, $\mathbf{I}_P = 20 \, \text{mA}$ Accuracy $= \pm 0.5 \, \%$ of \mathbf{V}_{PN} (@ $\mathbf{T}_A = +25 \, ^{\circ}\text{C}$) b) $\mathbf{R}_1 = 200 \, \text{k}\Omega/10 \, \text{W}$, $\mathbf{I}_P = 5 \, \text{mA}$ Accuracy $= \pm 2 \, \%$ of \mathbf{V}_{PN} (@ $\mathbf{T}_A = +25 \, ^{\circ}\text{C}$)

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to **R**₁ in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 100 to 5000 V.