Voltage Transducer LV 200-AW/2/SP1 For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit). $I_{PN} = 20 \text{ mA}$ $V_{PN} = 100..5000 \text{ V}$ ## **Electrical data** | _{PN}
 _P | Primary nominal r.m.s. current Primary current, measuring range | | 20
0 ± 40 | | m A
m A | |---------------------------------|---|--|------------------------|--------------------|------------| | R _M | Measuring resistance | | R _{M min} | R _{M max} | | | | with ± 15 V | $@ \pm 20 \mathrm{mA}_{\mathrm{max}}$ | 0 | 90 | Ω | | | | $@ \pm 40 \mathrm{mA}_{\mathrm{max}}^{\mathrm{max}}$ | 0 | 30 | Ω | | | with ± 24 V | $@ \pm 20 \mathrm{mA}_{\mathrm{max}}$ | 60 | 170 | Ω | | | | $@ \pm 40 \mathrm{mA}_{\mathrm{max}}$ | 60 | 70 | Ω | | I_{SN} | Secondary nominal r.m.s. current | | 100 | | m A | | K _N | Conversion ratio | | 10000 : 2000 | | | | v c | Supply voltage (± 10 %) | | ± 15 24 | | V | | I _c | Current consumption | | 30(@± | 24V)+ I s | mA | | \mathbf{V}_{d} | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | 12 ¹) | Ü | kV | | _ | | | 1 ²⁾ | | kV | | \mathbf{V}_{e} | R.m.s. voltage for partial discharge extinction | | | | | | , | @ 10 pC | | 4800 | | V | ## Accuracy - Dynamic performance data | $\mathbf{x}_{\scriptscriptstyle{G}}$ | Overall Accuracy @ I _{PN} , T _A = 25°C
Linearity error | | ± 0.5 < 0.1 | %
% | |--------------------------------------|---|---------------|----------------------|----------------| | I _O | Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$
Thermal drift of $\mathbf{I}_{\rm O}$
Response time 3) @ 90 % of $\mathbf{V}_{\rm PN}$ | - 25°C + 70°C | Typ
± 0.4
20 1 | mΑ
mΑ
μs | ## **General data** | \mathbf{T}_{A} | Ambient operating temperature | - 25 + 70 | °C | |--|---|---------------------|----| | T _s | Ambient storage temperature | - 40 + 85 | °C | | $\mathbf{R}_{_{\mathbf{P}}}^{^{\prime}}$ | Primary coil resistance @ T _A = 25°C | 450 | Ω | | $\mathbf{R}_{\mathrm{s}}^{'}$ | Secondary coil resistance @ T _A = 70°C | 30 | Ω | | m | Mass | 1.6 | kg | | | Standards | EN 50178 (01.10.97) | | Notes: 1) Between primary and secondary + shield - 2) Between secondary and shield - ³⁾ \mathbf{R}_1 = 50 kΩ (L/R constant, produced by the resistance and inductance of the primary circuit). #### **Features** - Closed loop (compensated) voltage transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0 - Accessible electronic circuit - Shield between primary and secondary circuit. ## Special feature • $V_d = 12 \, k \, V^{1}$. ## Principle of use For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R₁ which is selected by the user and installed in series with the primary circuit of the transducer. #### **Advantages** - Excellent accuracy - Very good linearity - · Low thermal drift - High immunity to external interference. #### **Applications** - AC variable speed drives and servo motor drives - · Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Power supplies for welding applications. 030915/6 # **Dimensions LV 200-AW/2/SP1** (in mm. 1 mm = 0.0394 inch) #### **Mechanical characteristics** • General tolerance ± 0.5 mm Transducer fastening 4 slots Ø 6.5 mm 4 M6 Steel screws Recommended fastening torque 4.5 Nm or 3.32 Lb - Ft. Connection of primary M5 threaded stude Connection of accordance M6 threaded stude Connection of secondary Recommended fastening torque 2.2 Nm or 1.62 Lb - Ft. #### Remark • I_s is positive when V_p is applied on terminal +HT. #### Instructions for use of the voltage transducer model LV 200-AW/2/SP1 Primary resistor \mathbf{R}_1 : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, \mathbf{R}_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 20 mA. Example: Voltage to be measured $\mathbf{V}_{PN} = 1000 \, \text{V}$ a) $\mathbf{R}_1 = 50 \, \text{k}\Omega/40 \, \text{W}$, $\mathbf{I}_P = 20 \, \text{mA}$ Accuracy $= \pm 0.5 \, \%$ of \mathbf{V}_{PN} (@ $\mathbf{T}_A = +25 \, ^{\circ}\text{C}$) b) $\mathbf{R}_1 = 200 \, \text{k}\Omega/10 \, \text{W}$, $\mathbf{I}_P = 5 \, \text{mA}$ Accuracy $= \pm 2 \, \%$ of \mathbf{V}_{PN} (@ $\mathbf{T}_A = +25 \, ^{\circ}\text{C}$) Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to **R**₁ in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 100 to 5000 V.